Abstract

The delay and network are incorporated to describe the spatiotemporal behavior of a food-limited population dynamical system. By using the standard approach of upper and lower solutions, we have shown the global existence and uniqueness of solutions to the system. By analyzing eigenvalue spectrum, we show that the delay can cause the long-term behavior of the system from stability to instability, that is, the positive equilibrium is asymptotically stable in the absence of delay, but loses its stability such that the Hopf bifurcation occurs when the time delay increases beyond a threshold. By the norm form and the center manifold theory, we study the stability and direction of the Hopf bifurcation. We propose some formulas to control the stability and period of the bifurcating periodic solutions. Moreover, numerical simulations reveal that the network structure can switch the type of spatiotemporal patterns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.