Abstract

This paper deals with the problems of delay-dependent stability and H∞ performance for uncertain neutral systems with time-varying delays, and nonlinear perturbations. The time-varying delays are neutral, discrete, and distributed time-varying delays that the upper bounds for the delays are available. The restrictions on the derivatives of the discrete and distributed time-varying delays are removed, which mean that a fast discrete time-varying delay is allowed. The uncertainties under consideration are nonlinear time-varying parameter perturbations and norm-bounded uncertainties, respectively. Firstly, by applying a novel Lyapunov-Krasovskii functional approach, Wirtinger-based integral inequality, Peng-Park’s integral inequality, decomposition technique of constant matrix, descriptor model transformation, Leibniz Newton formula and utilization of zero equation, and improved delay-dependent bounded real lemmas (BRL) for systems are established in terms of linear matrix inequalities (LMIs). Then, based on the obtained BRL, some less conservative delay-dependent stability criteria of uncertain neutral systems with mixed time-varying delays and nonlinear perturbations are obtained and improved H∞ performance criterion with the framework of LMIs is introduced. Finally, some numerical examples are given to illustrate that the presented method is effective.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.