Abstract

It is still a big challenge to obtain excellent low-temperature toughness for bulk steel materials. Delamination is an effective method to improve low-temperature toughness. In the present study, delamination toughening in a low carbon microalloyed steel plate with elongated and ultrafine-grained microstructure rolled in the dual-phase region has been investigated in detail. When toughness was measured along normal direction, the steel plate had a high upper shelf energy and no delamination occurred in the upper shelf region. A large delaminated crack parallel to rolling plane started to appear and changed the propagation path of main crack when testing temperature was lower than −60 °C. We find this kind of delamination induces a second upper shelf in the Charpy transition–temperature curve. The second upper shelf, reaching up to 300 J in the temperature range of −60 °C to −140 °C, results in excellent low-temperature toughness for the steel plate, and the ductile-brittle transition temperature is lowered to −157 °C. The developed steel plate also has high low-temperature toughness measured along transverse direction due to delamination. The effect factors on upper shelf energy, delamination mechanism and delamination toughening are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.