Abstract
The thermally induced dehydroxylation of lizardite and its phase transformation to forsterite were studied by high-temperature X-ray diffraction (H T -XRD), thermogravimetry (TGA) and Fourier-transformed infrared spectroscopy (FTIR). Primary sample characteristics like chemical composition and crystallographical structure were determined by combined (HR)TEM-EDX, electron-microprobe analyses (EMPA) as well as conventional X-ray diffraction (XRD). Isothermal H T -XRD and non-isothermal TGA data were treated with the classical Avrami-Erofe’ev method and more advanced isoconversional methods in order to obtain kinetic data of a multi-step decomposition reaction. A highly precise activation energy E a versus reaction progress (α) dependency based on non-isothermal TGA data of lizardite is provided and associated mechanisms are discussed. Here, the main focus is on recently published ab initio calculations from the phase transformation of other phyllosilicates. Moreover, the calculated overall apparent activation energy is compared with discrepant data from the literature and discussed. Especially, the usability of overall activation energies of multi-step decomposition reactions is critically discussed. The presented and discussed reaction steps of water formation from different hydroxyl species in lizardite can be used to improve ab initio calculations, especially the pre-selection of reacting hydroxyl species in hydrous sheet like minerals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.