Abstract

The effect of dehydration of plant cell walls on the physical status of cellulose microfibrils (CMFs) interspersed in pectin matrices was studied. Vibrational sum frequency generation (SFG) spectroscopy analysis of cellulose revealed reversible changes in spectral features upon dehydration and rehydration of onion epidermal walls used as a model primary cell wall (PCW). Combined with microscopic imaging and indentation modulus data, such changes could be attributed to local strains in CMFs due to the collapse of the pectin matrix upon dehydration. X-ray diffraction (XRD) showed that the (200) spacing of cellulose in dried PCWs is larger than that of cellulose Iβ obtained from tunicates. Thus, the modulus of CMFs in PCWs would be lower than those of highly-crystalline cellulose Iβ and inhomogeneous local bending or strain of CMFs could occur readily during the physical collapse of pectin matrix due to dehydration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.