Abstract

The attack by the bph-encoded biphenyl dioxygenase of Burkholderia sp. strain LB400 on a number of symmetrical ortho-substituted biphenyls or quasi ortho-substituted biphenyl analogues has been investigated. 2,2'-Difluoro-, 2,2'-dibromo-, 2,2'-dinitro-, and 2,2'-dihydroxybiphenyl were accepted as substrates. Dioxygenation of all of these compounds showed a strong preference for the semisubstituted pair of vicinal ortho and meta carbons, leading to the formation of 2'-substituted 2,3-dihydroxybiphenyls by subsequent elimination of HX (X = F, Br, NO(2), or OH). All of these products were further metabolized by 2,3-dihydroxybiphenyl 1,2-dioxygenases of Burkholderia sp. strain LB400 or of Rhodococcus globerulus P6. Dibenzofuran and dibenzodioxin, which may be regarded as analogues of doubly ortho-substituted biphenyls or diphenylethers, respectively, were attacked at the "quasi ortho" carbon (the angular position 4a) and its neighbor. This shows that an aromatic ring-hydroxylating dioxygenase of class IIB is able to attack angular carbons. The catechols formed, 2,3,2'-trihydroxybiphenyl and 2,3,2'-trihydroxydiphenylether, were further metabolized by 2,3-dihydroxybiphenyl 1,2-dioxygenase. While angular attack by the biphenyl dioxygenase was the main route of dibenzodioxin oxidation, lateral dioxygenation leading to dihydrodiols was the major reaction with dibenzofuran. These results indicate that this enzyme is capable of hydroxylating ortho or angular carbons carrying a variety of substituents which exert electron-withdrawing inductive effects. They also support the view that the conversions of phenols into catechols by ring-hydroxylating dioxygenases, such as the transformation of 2,2'-dihydroxybiphenyl into 2,3,2'-trihydroxybiphenyl, are the results of di- rather than of monooxygenations. Lateral dioxygenation of dibenzofuran and subsequent dehydrogenation and extradiol dioxygenation by a number of biphenyl-degrading strains yielded intensely colored dead-end products. Thus, dibenzofuran can be a useful chromogenic indicator for the activity of the first three enzymes of biphenyl catabolic pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.