Abstract

The aim of this paper is to investigate upper bounds for the maximum degree of the elements of any minimal Janet basis of an ideal generated by a set of homogeneous polynomials. The presented bounds depend on the number of variables and the maximum degree of the generating set of the ideal. For this purpose, by giving a deeper analysis of the method due to Dube (SIAM J Comput 19:750–773, 1990), we improve (and correct) his bound on the degrees of the elements of a reduced Grobner basis. By giving a simple proof, it is shown that this new bound is valid for Pommaret bases, as well. Furthermore, based on Dube’s method, and by introducing two new notions of genericity, so-called J-stable position and prime position, we show that Dube’s (new) bound holds also for the maximum degree of polynomials in any minimal Janet basis of a homogeneous ideal in any of these positions. Finally, we study the introduced generic positions by proposing deterministic algorithms to transform any given homogeneous ideal into these positions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.