Abstract

This paper presents the results of analyzing the data available in the literature on the structure and properties of silicate glasses and melts that contain Ti4+, Al3+, and Fe3+ cations in addition to alkali and alkaline-earth cations. It is established that the aforementioned multivalent cations in glasses and melts have a coordination number of four and play the role of network-formers. Aluminosilicate glasses and melts with the mole fraction ratio Al2O3/M 2(M′)O = 1 are of special interest. For these glasses, the structure is considered to be completely polymerized and, contrary to traditional concepts, their properties depend on the concentration ratio Al2O3/SiO2. Taking into account that the structure of aluminosilicate glasses involves unusual structural units (such as triclusters) and a certain number of nonbridging oxygen atoms, a formula is proposed for calculating the degree of polymerization. The proposed formula is used to calculate the degree of polymerization for a number of Na2O · Al2O3 · mSiO2 glasses and the CaO · Al2O3 · 2SiO2 glass. It is demonstrated that the calculated degrees of polymerization correlate with the experimentally measured viscosities of the relevant melts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.