Abstract

During the decompression of plastically deformed glasses at room temperature, some aspects of irreversible densification may be preserved. This densification has been primarily attributed to topological changes in glass networks. The changes in short-range structures like cation coordination numbers are often assumed to be relaxed upon decompression. Here the NMR results for aluminosilicate glass upon permanent densification up to 24 GPa reveal noticeable changes in the Al coordination number under pressure conditions as low as ∼6 GPa. A drastic increase in the highly coordinated Al fraction is evident over only a relatively narrow pressure range of up to ∼12 GPa, above which the coordination change becomes negligible up to 24 GPa. In contrast, Si coordination environments do not change, highlighting preferential coordination transformation during deformation. The observed trend in the coordination environment shows a remarkable similarity to the pressure-induced changes in the residual glass density, yielding a predictive relationship between the irreversible densification and the detailed structures under extreme compression. The results open a way to access the nature of plastic deformation in complex glasses at room temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.