Abstract

The distinction between implicit and explicit forms of memory retrieval is long-standing, and important to the extent it reveals how different neural architecture supports different aspects of memory function. Similarly, distinctions have been made between kinds of repetition priming, a form of implicit memory retrieval. This study focuses on the production–identification (ID) priming distinction, which delineates priming tasks involving verification of stimulus features as compared to priming tasks that require use of a cue to guide response retrieval. Studies investigating this dissociation in dementia or similar patient populations indicate that these forms of priming may differ in their neural bases. The current study looks at degree of handedness as a way of investigating inferred neural architecture supporting these two forms of priming. A growing body of research indicates that degree of handedness (consistent, or CH, versus inconsistent, or ICH) is associated with greater interhemispheric interaction and functional access to right hemisphere processing in ICH, with superior performance seen in ICH on memory tasks reliant on this processing. Arguments about the theoretical mechanisms underlying ID and production forms of perceptual priming tasks suggest that performance on these tasks will differ as a function of degree of handedness. We tested this question in a group of CH and ICH young adults, who were asked to study lists of words prior to performing a production priming task (word stem completion, WSC), a perceptual word ID task, and a word stem cued recall task. While both handedness groups exhibited reliable priming across tasks, WSC priming was greater in ICH than CH participants, with ID priming not differing between groups. This dissociation supports the argument that production and ID forms of priming have different underlying neural bases.

Highlights

  • The fact that memory expresses itself in diverse ways is well established

  • Handedness was measured via the Edinburgh Handedness Inventory (EHI; Oldfield, 1971) where scores can range from −100 to +100, with a score ≥±80 used to distinguish consistent from inconsistent handedness (Prichard et al, 2013)

  • For the repetition priming tasks, the scores used for analysis consisted of priming scores: (1) for the word stem completion (WSC) task, priming scores were calculated as studied items completed as targets minus filler items completed as targets; (2) for the ID task, priming scores were calculated as studied items correctly identified minus filler items correctly identified

Read more

Summary

Introduction

The fact that memory expresses itself in diverse ways is well established. For example, memory can be expressed explicitly or implicitly. Dissociations between explicit and implicit memory performance are often observed, especially in amnesia (e.g., Shimamura, 1986) and aging (e.g., LaVoie and Light, 1994), where amnesics and older adults often demonstrate impaired performance on explicit memory tasks relative to normal controls and young adults, respectively, yet relatively spared performance on repetition priming tasks. Such dissociations are used to support the argument that different memory systems or underlying neural architecture support these different forms of memory

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.