Abstract

A porous carbon cathode was prepared using graphite, polytetrafluoroethylene (PTFE), and degreasing cotton (DC) through sintering treatment. The carbonization of DC by heat treatment played an ideal role in pore-creating, which weakened the mass transfer resistance of O2, and as a result, the adoption of degreasing cotton significantly improved the performance of H2O2 electro-generation. The optimized cathode was able to generate 567 mg L-1 H2O2 with a current efficiency (CE) of 86.7% by the electrochemical reaction of 60 min in a divided reactor. Furthermore, the degradation of rhodamine B (RhB) was carried out by an electro-Fenton system using the optimal cathode selected. The developed electro-Fenton system exhibited an excellent RhB degradation performance. The RhB solution of 50 mg L-1 was decolorized completely by the treatment of 10 min. Moreover, the degradation of 50~90 mg L-1 RhB solution presented over 90% TOC removal by the treatment of 120 min, indicating the ideal mineralization of organic pollutants. In addition, it was found that •OH was the major oxidizing specie responsible for the organics degradation. Finally, the possible pathway of RhB degradation in the electro-Fenton system was proposed by GC-MS analysis. The adoption of natural fibers for pore-creating provides an innovative and low-cost method to prepare porous cathode, which may promote the application of electro-Fenton oxidation in wastewater treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.