Abstract

The kinetic investigation of rhodamine B dye's photocatalytic degradation, chosen as a model pollutant, was conducted at room temperature using Zinc oxide (ZnO) and nickel-doped zinc oxide (Zn0.97Ni0.03O) photocatalysts synthesized through the spray pyrolysis method. XRD analysis confirmed the formation of hexagonal ZnO and Zn0.97Ni0.03O films, with crystallite sizes ranging from 19 to 29 nm and varying in mean average grain size from 72 nm to 88 nm. The surface morphology of the Ni-doped ZnO films was influenced by nickel doping, observed through SEM and TEM micrographs, revealing a dense structure of spherical-shaped crystals. Light transmission and optical band gap energy of the films ranged between specified values, ranging from 3.27 to 3.24 eV. The degradation process was assessed under various conditions, including different light sources (UV lamp and solar irradiation), pH levels, and substrate concentrations. Degradation followed a pseudo-first-order kinetic model, with rate constants (k) and half-life times (t1/2) calculated accordingly. The degradation efficiency of undoped ZnO and ZnO doped with nickel decreased with increasing concentration under UV irradiation from (0.1–0.5 M) under UV irradiation decreased from (34.29–45.02) (49.61–56.61), while under visible light are (40–45.07 %) (58.46–60.24 %), removal rates ranged within specific percentages. The porous Zn0.97Ni0.03O synthesized at 0.5 M exhibited the highest photocatalytic efficiency due to its enhanced crystallinity, resulting in degradation rates of 9.22 and 11.22 × 10−3 min−1 and half-life times of 75.18 and 61.77 min at 90 min specified for both UV and solar light irradiations, respectively. Acidification of the reaction medium accelerated the photocatalytic degradation kinetics, while alkalization slowed it down. These findings mark a significant advancement in the utilization of oxide semiconductors for water pollutant degradation under natural sunlight.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.