Abstract

Seven commercial 3- to 7-ring (R) polycyclic aromatic hydrocarbons (PAH) as well as PAH derived from lignite tar were spiked into 3 soils (0.8 to 9.7% of organic carbon). The disappearance of the original PAH was determined for the freshly spiked soils, for soils incubated for up to 287 d with their indigenous microflora, and for autoclaved, unsterile and pasteurized soils inoculated with basidiomycetous and ascomycetous fungi. Three to 12 d after spiking, 22 to 38% of the PAH could no longer be recovered from the soils. At 287 d, 88.5 to 92.7%, 83.4 to 87.4%, and 22.0 to 42.1% of the 3-, 4-, and 5- to 7-R PAH, respectively, had disappeared from the unsterile, uninoculated soils. In 2 organic-rich sterile soils, the groups of wood- and straw-degrading, terricolous, and ectomycorrhizal fungi reduced the concentration of 5 PAH by 12.6, 37.9, and 9.4% in 287 d. Five- to 7-R PAH were degraded as efficiently as most of the 3- to 4-R PAH. In organic-rich unsterile soils inoculated with wood- and straw-degrading fungi, the degradation of 3- to 4-R PAH was not accelerated by the presence of fungi. The 5- to 7-R PAH, which were not attacked by bacteria, were degraded by fungi to 29 to 42% in optimum combinations of fungal species and soil type. In organic-poor unsterile soil, these same fungi delayed the net degradation of PAH possibly for 2 reasons. Mycelia of Pleurotus killed most of the indigenous soil bacteria expected to take part in the degradation of PAH, whereas those of Hypholoma and Stropharia promoted the development of opportunistic bacteria in the soil, which must not necessarily be PAH degraders. Contemporarily, the contribution of the fungi themselves to PAH degradation may be negligible in the absence of soil organic matter due to the lower production of ligninolytic enzymes. It is concluded that fungi degrade PAH irrespective of their molecular size in organic-rich and wood chip-amended soils which promote fungal oxidative enzyme production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.