Abstract

Chelating sorbents with 8-hydroxyquinoline (IVa), 8-hydroxyquinoline-5-sulfonic acid (IVb), and tris(2-aminoethyl)amine (VI) ligands immobilized on macroporous methacrylate matrix were prepared and saturated with Co(II), Cu(II), and Fe(II). All these chelates catalyze cleavage of H2O2 yielding highly reactive hydroxyl radicals. All were able to degrade by this mechanism polycyclic aromatic hydrocarbons (anthracene, benzo[a]pyrene and benzo[k]fluoranthene). The most effective catalysts IVa-Fe, IVb-Fe, and VI-Cu (25mg with 100μmol H2O2) performed complete decomposition of 33μg anthracene and benzo[a]pyrene during one 7-day catalytic cycle at 25°C. The fastest decomposition proceeded during the 1st day of incubation; 75% of anthracene and 74% of benzo[a]pyrene were decomposed by IVb-Co within the first 24h. More than 25% decomposition within the 1st day was also achieved with IVb-Fe, VI-Cu, IVa-Cu, and VI-Co for anthracene and more than 30% benzo[a]pyrene was decomposed by IVb-Fe, VI-Cu, IVa-Cu, and IVb-Cu during the same period. 1,4-Anthracenedione was the main product of anthracene oxidation by all catalysts. The catalysts were stable at pH 2–11 depending on their structure and able to perform sequential catalytic cycles without regeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.