Abstract
Water pollution by pharmaceutically active compounds is an emerging issue. Toxicological studies reveal that pharmaceuticals are indeed toxic for living organisms. The lack of suitable treatment technology for the complete removal of pharmaceuticals is therefore a major challenge. Advanced oxidation processes are emerging removal techniques that have many advantages versus conventional technologies. Many studies indicate that advanced oxidation processes, either in single or in combination with other degradation techniques, can enhance the degradation of pharmaceuticals in aqueous solutions. Here, we review the degradation of pharmaceuticals by sonolysis, an oxidation processes using ultrasound. In this technique, hydroxyl radicals are generated by pyrolytic cleavage of water molecules. We review the influence of operational parameters, additives and hybrid techniques on the degradation of pharmaceuticals. The maximum degradation of organic compounds was observed in the frequency range of 100–1000 kHz, which is in the high-frequency medium-power ultrasound. Even though almost all the experiments presented more than 90 % removal and good biodegradability of the target compound, good mineralization and the toxicity removal were hardly achieved. The efficiency of the degradation varies with water matrixes and varying pH. Major pathways of degradation are hydroxylation, dehalogenation, demethylation, decarboxylation, deamination, etc. More hybrid techniques have to be developed to scale up the application of ultrasound.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.