Abstract
Recent studies have shown that nitrification inhibitor (NI) impairs the efficacy of urease inhibitor, N-(n-butyl) thiophosphoric triamide (NBPT), in reducing ammonia volatilization and urea hydrolysis rate. A laboratory study was conducted to evaluate the influence of NI (specifically 3,4-dimethyl pyrazole phosphate) on the degradation of NBPT in six soils. Soils were amended with either NBPT (10 mg NBPT kg−1 soil) or NBPT plus NI (DI; 10 mg NBPT + 2.5 mg NI kg−1 soil), incubated at 21 °C, and destructively sampled eight times during a 14-day incubation period. The degradation of NBPT in soil was quantified by measuring NBPT concentration with high-performance liquid chromatography-mass spectrometry, and the degradation rate constant was modeled with an exponential decay function. The study showed that the persistence of NBPT in soil was not influenced by the presence of NI, as the NBPT degradation rate constant across soils was 0.5 d−1 with either NBPT or DI. In contrast, the degradation rate constant was significantly dependent on soils, with values ranging from 0.4 to 1.7 d−1. Soil pH was the most important variable affecting the persistence of NBPT in soils. The half-life of NBPT was 0.4 d in acidic soil and 1.3 to 2.1 d in neutral to alkaline soils. The faster degradation of NBPT in acidic soils may explain its reduced efficacy in such soils.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.