Abstract

The degradation of three micropollutants (i.e., atrazine (ATZ), sulfamethoxazole (SMX) and metoprolol (MET)) was comprehensively investigated in flow-through UV/chlorine reactors. Results showed that the micropollutants degradation fitted well with pseudo-first-order kinetics (R2 > 0.92) with the order of rate constants following SMX > MET > ATZ. The developed steady-state approximation (SSA) model was roughly applicable in flow-through UV/chlorine reactors with the predictions deviated within 44%. UV photolysis here stood as the major degradation pathway for ATZ while the contribution of non-radical processes (UV photolysis and chlorination) to SMX degradation increased as the reactor internal diameter enlarged. The degradation rates were reduced to varying extents with complex water matrices (chloride, bicarbonate and dissolved organic matter (DOM)) where the inhibition from the DOM was most prominent (up to 73.6%). Although reactors with a larger internal diameter resulted in reduced degradation rate constants, the energy requirements were also lowered. The EEO values of micropollutants degradation by UV/chlorine fell mostly within 1.0 kWh m−3 order−1 in deionized water and under different water matrices. The acute toxicity was observed to be higher after UV/chlorine treatment in tap water, but still stayed low in general. This study revealed the different kinetics and mechanisms of micropollutants degradation in flow-through reactors and demonstrated the potential of the UV/chlorine process in terms of low energy consumption and acute toxicity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.