Abstract

The increasing presence of freshwater toxins have brought new challenges to preserve water quality due to their potential impact on the environment and human health. Two commonly occurring cyanotoxins, microcystin-LR and cylindrospermopsin, with different physico-chemical properties were used to evaluate the efficiency of photocatalysis using a continuous-flow reactor with immobilized TiO2 on glass tubes and UV-A light. The effect of flow rate and hydrogen peroxide addition on the efficiency of cyanotoxin removal were evaluated. An analysis of the effects on microcystin-LR removal efficiency showed that low flow rates (1 mL/min) and high H2O2 concentrations (120 mg/L) were needed to provide effective degradation. Up to 27.9% and 39.1% removal of MC-LR and CYN, respectively were achieved by UV-A/TiO2 after a single pass through the reactor. A slight increase of the removal of both cyanotoxins was observed when they were in a mixture (35.5% of MC-LR and 51.3% of CYN). The addition of H2O2 to the UV/TiO2 system led to an average removal enhancement of 92.6% of MC-LR and of 29.5% of CYN compared to the UV/TiO2 system. Photolysis assisted by H2O2 degraded MC-LR by up to 77.7%. No significant removal (<10%) was observed by photolysis alone or physical adsorption.This study presents a proof-of-principle that demonstrates the feasibility for this technology to be integrated in large-scale applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.