Abstract
The aerobic aquatic metabolism of flumioxazin was studied in two water-sediment systems under illumination and in darkness to investigate its degradation profiles. (14)C-Flumioxazin separately labeled at the 1- and 2-positions of the tetrahydrophthalimide moiety or uniformly labeled at the phenyl ring was applied to a overlying water at a rate equivalent to 600 g ai/ha by assuming uniform distribution in the water layer to a depth of 100 cm. Flumioxazin was rapidly degraded at 20 °C in the overlying waters irrespective of irradiation with half-lives of 0.1-0.4 day. Both various modes of liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR) spectroscopy analyses showed four major degradates under irradiation. Two of them were formed via successive hydrolysis of the cyclic imide ring, and the others were 2-arizidinone derivatives via photoinduced rearrangement. The presence of sediment under illumination greatly reduced the formation of these degradates and accelerated their degradation. The partitions of flumioxazin and its degradates to the bottom sediment not only reduced their fractions in the water layer subjected to hydrolysis and photolysis but also enhanced their microbial degradation in the sediment. The illuminated water-sediment systems were considered to more adequately represent the behavior of flumioxazin and its degradates in the environment than the corresponding studies of aqueous photolysis and water-sediment in darkness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.