Abstract

In the present study, aqueous behavior and fate of diamide insecticide tetrachlorantraniliprole (TCTP) were investigated under laboratory-controlled conditions. Half-lives of TCTP photolysis in natural water and pH buffers were 1.4–2.8 h, comparing with those of 1.2–231 d for hydrolysis. Both processes were highly influenced by pH with respect to degradation kinetics and routes. The hydrolysis rate of TCTP was accelerated by elevated temperatures. The presence of nitrate enhanced TCTP photolysis while fulvic acid exhibited suppression, with the extent of both effects as a function of concentration. Four degradation products were identified using a variety of spectroscopic approaches. Key reactions involved in the degradation pathways include intramolecular substitution and cyclization. There was a reduction in the acute toxicity of all four products to Daphnia magna by comparison with TCTP, whereas they were still classified as category 1 or 2 hazardous substances to the aquatic environment according to the Globally Harmonized System of Classification and Labelling of Chemicals (GHS) standards.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.