Abstract

This study aims to explore the photocatalytic potential of graphene-oxide-based metal ferrites for the degradation of acetamiprid (an odorless neonicotinoid pesticide). Metal (Mn and Ni) ferrites (along with their graphene oxide composites) were prepared by the hydrothermal method while graphene oxide (GO) was synthesized using a modified Hummer's method. The composites were characterized by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy. The photocatalysts were studied for their Fenton-like advanced oxidation process to degrade acetamiprid. The composites showed excellent activity against acetamiprid degradation (>90%) in 60 min under UV irradiation. The detailed optimization study was carried out to investigate the influential variables (such as pH, catalyst dose, pollutant concentration, irradiation time, oxidant dose, etc.) to achieve enhanced degradation efficiency. Moreover, the findings were endorsed by central composite design (CCD). It was concluded that degradation was enhanced in an appropriate combination of photocatalyst and hydrogen peroxide. The magnetic character of the metal ferrites and their composites played an important role in the easy separation and reusability of these materials. The present findings result in highly effective, easy to handle and stable heterogeneous photo-Fenton materials for wastewater remediation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.