Abstract

Bio-deterioration of concrete, which is very common in sewer system and waste water treatment plant, results in significant structure degradation. Normally, the process can be described by the two following steps: Biochemical reactions producing biogenic aggressive species (H2SO4 is one of the most significant biogenic acid in sewer pipes), and chemical reactions between biogenic aggressive species and cement hydration products which is responsible for concrete degradation. A reactive transport model is proposed to simulate the chemical degradation process of cementitious materials in contact with H2SO4 solution. The dissolution of portlandite (CH) and calcium silicate hydrates (C–S–H) and the precipitation of gypsum (p) are described by mass action law and threshold of ion activity products. To take into account the continuous decrease of the Ca/Si ratio during the dissolution of C–S–H a generalization of the mass action law is applied. A simplified damage model is introduced to characterize the degradation of concrete due to the swelling of gypsum. Some experiments reported in literature are simulated. The numerical results and the experimental observations are compared and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.