Abstract

Chemical vapor-infiltrated self-healing SiC(f)/BN(i)/[SiC-B4C](m) composite specimens were exposed at 1300 °C for 300 h at atmospheric pressure under two different oxidizing atmospheres (i.e., wet (12%H2O:8%O2:80%Ar) and dry (0.01%O2:99.99%Ar)) representative of rich and poor oxidizing conditions, respectively. Mechanical testing, microstructural observations, and element analyses were performed on the treated specimens. The flexural strength retentions of the specimens were 47.9 and 39.4% under wet and dry oxygen conditions, respectively. The SiC and B4C matrices were severely oxidized under wet oxygen conditions, whereas the BN interphase remained intact. The BN interphase and the B4C layered phase were both partially oxidized under dry oxygen conditions. Thus, the SiC(f)/BN(i)/[SiC-B4C](m) composites exhibited improved oxidation resistance under wet oxygen atmospheres as compared to dry oxygen conditions as a result of the formation of borosilicate glasses. In addition, two different degradation mechanisms for the composites during the oxidation process were discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.