Abstract

The kinetics of chlorination of dinoseb and the corresponding formation of disinfection by-products (DBPs) were studied between pH 4 and 9 at room temperature (25±1°C). The reactivity shows a minimum at pH 9, a maximum at pH 4 and a medium at neutral conditions. pH profile of the apparent second-order rate constant of the reaction of dinoseb with chlorine was modeled considering the elementary reactions of HOCl with dinoseb species and an acid-catalyzed reaction. The predominant reactions at near neutral pH were the reactions of HOCl with the two species of dinoseb. The rate constants of 2.0 (±0.8)×104M−2s−1, 3.3 (±0.6) and 0.5 (±0.1)M−1s−1 were determined for the acid-catalyzed reaction, HOCl reacted with dinoseb and dinoseb−, respectively. The main degradation by-products of the dinoseb formed during chlorination have been separated and identified by GC–MS with liquid–liquid extraction sample pretreatment. Six volatile and semi-volatile DBPs were identified in the chlorination products, including chloroform (CF), monochloroacetone, chloropicrin (TCNM), 1,1-dichloro-2-methy-butane, 1,2-dichloro-2-methy-butane, 1-chloro-3-methy-pentanone. A proposed degradation pathway of dinoseb during chlorination was then given. TCNM and CF formation potential during chlorination of dinoseb reached as high as 0.077 and 0.097μMμM−1 dinoseb under the traditional condition (pH=7 and Cl2/C=2). Their yields varied with Cl2/C, pH and time. The maximum yields of TCNM appeared at molar ratio as Cl2/C=1 and pH 3, while the maximum of CF appeared at molar ratio as Cl2/C=4 and pH 7. [TCNM]/[CF] decreased with reaction time and increased solution pH.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.