Abstract
Generally, raft structure and interfacial dislocation networks enhance the creep resistance at elevated temperatures above 1000 °C and low stresses in Ni-based single crystal superalloys. However, the formation of raft structure and dislocation networks by raising the Mo content increased the creep rate at 900 °C and 392 MPa, accelerating the final failure. The formation of rafts was closely related to the creep rate acceleration, promoting dislocations piling up at the γ′/γ interface and the shearing events in the γ′ phase. Moreover, the dislocation networks formed at 900 °C and 392 MPa did not differentiate significantly with different Mo content, which could not enhance the creep resistance as expected. This work revealed the microstructural evolution at medium temperature and provided a new perspective for understanding the creep mechanisms and alloy design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.