Abstract
In view of the increasing threat of overuse of broad-spectrum antibiotics to water environment, here, a series of small molecular intercalated bismuth oxychloride (SBC-X) composite photocatalysts were successfully constructed by a simple stirring synthesis at room temperature. Among them, SBC-0.5 showed excellent photocatalytic performance against the three target broad-spectrum antibiotics in visible light, which was 3.06 times, 5.93 times and 11.64 times higher than that of monomer for degrading tetracycline, norfloxacin and ciprofloxacin, respectively. Through analysis, it was found that the excellent photocatalytic degradation performance of SBC-0.5 was mainly attributed to the greatly improved specific surface area, which increased to 14 times of monomer, providing a large number of reaction sites for the subsequent photocatalytic degradation. Besides, intercalated molecules as charge transfer bridges between nanosheets greatly accelerated the efficiency of photogenerated charge transfer between layers. Free radical trapping experiments and electron spin resonance indicated that superoxide anion radicals played a major role in the photocatalytic degradation, followed by singlet oxygen. Furthermore, nine potential degradation intermediates were identified, and the toxicity was greatly reduced confirmed by ECOSAR software prediction and soybean seed germination and seeding growth experiment. Our work will provide useful information for the purification of wastewater containing antibiotics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.