Abstract
Polymer microcapsules offer a possibility of storing increased amounts of drugs. Appropriate design and composition of the microcapsules allow tuning of the drug-release process. In this paper, we report on synthesis of hydrogel microcapsules sensitive to temperature and pH and degradable by glutathione and hydrogen peroxide. Microcapsules were based on thermo-responsive poly(N-isopropylacrylamide) and degradable cystine crosslinker, and were synthesized by applying precipitation polymerization. Such way of polymerization was appropriately modified to limit the crosslinking in the microcapsule center. This led to a possibility of washing out the pNIPA core at room temperature and the formation of a capsule. Microcapsules revealed rather high drug-loading capacity of ca. 17%. The degradation of the microcapsules by the reducing agent (GSH) and the oxidizing agent (H2O2) was confirmed by using the DLS, UV-Vis, SEM and TEM techniques. Depending on pH and concentration of the reducing/oxidizing agents a fast or slow degradation of the microcapsules and a burst or long-term release of doxorubicin (DOX) were observed. The DOX loaded microcapsules appeared to be cytotoxic against A2780 cancer cells similarly to DOX alone, while unloaded microcapsules did not inhibit proliferation of the cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.