Abstract
Surgery is the only definitive treatment for degenerative cervical myelopathy (DCM), however, the degree of neurological recovery is often unpredictable. Here, we assess the utility of a multidimensional diagnostic approach, consisting of clinical, neurophysiological, and radiological parameters, to identify patients likely to benefit most from surgery. Thirty-six consecutive patients were prospectively analyzed using the modified Japanese Orthopedic Association (mJOA) score, MEPs/SSEPs and advance and conventional MRI parameters, at baseline, and 3- and 12-month postoperatively. Patients were subdivided into “normal” and “best” responders (<50%, ≥50% improvement in mJOA), and correlation between Diffusion Tensor Imaging (DTI) parameters, mJOA, and MEP/SSEP latencies were examined. Twenty patients were “best” responders and 16 were “normal responders”, but there were no statistical differences in age, T2 hyperintensity, and midsagittal diameter between them. There was a significant inverse correlation between the MEPs central conduction time and mJOA in the preoperative period (p = 0.0004), and a positive correlation between fractional anisotropy (FA) and mJOA during all the phases of the study, and statistically significant at 1-year (r = 0.66, p = 0.0005). FA was significantly higher amongst “best responders” compared to “normal responders” preoperatively and at 1-year (p = 0.02 and p = 0.009). A preoperative FA > 0.55 was predictor of a better postoperative outcome. Overall, these results support the concept of a multidisciplinary approach in the assessment and management of DCM.
Highlights
Degenerative cervical myelopathy (DCM) is typically a chronic condition, commonly involving patients older than 55 years [1], and represents the most common cause of spinal cord injury in the industrialized world [2]
The diagnosis of degenerative cervical myelopathy (DCM) is based on clinical examination, and subsequently confirmed using imaging, and sometimes neurophysiological techniques such as sensory (SSEPs) and motor evoked potentials (MEPs)
T2 hyperintensity presents in 58%–85% of DCM patients, but it is present in 2.3% of people in the general population as well, making it a sensitive measure for diagnosis, but limiting it in terms of predicting surgical outcome
Summary
Degenerative cervical myelopathy (DCM) is typically a chronic condition, commonly involving patients older than 55 years [1], and represents the most common cause of spinal cord injury in the industrialized world [2]. The most commonly studied parameters include T1-weighted hypointensity or T2-weighted hyperintensity signals of the spinal cord and the number of compressed levels. Edema and gliosis are thought to result in demyelination and Wallerian degeneration, and are typically associated with T2 hyperintensity signal changes in the absence of T1 hypointensity [6]. T2 hyperintensity presents in 58%–85% of DCM patients, but it is present in 2.3% of people in the general population as well, making it a sensitive measure for diagnosis, but limiting it in terms of predicting surgical outcome. T1 hypointensity has been found to be a good predictor of suboptimal surgical outcome but its low prevalence in DCM of about 20% of patients limits its clinical utility [11]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.