Abstract

Transient global ischemia was produced in rats by cisternal fluid infusion, producing a negative cerebral perfusion pressure by elevating the intracranial pressure (ICP) 25–50 mm Hg above mean arterial pressure (MAP). Animals were allowed to survive for 2–7 days following a transient ischemic episode of 5–30 min. The brains were examined for signs of ischemic degeneration in Nissl-stained sections and adjacent sections reacted with antisera against glial fibrillary acidic protein (GFAP) or aspartate aminotransferase (AAT). Neurons in the thalamic reticular nucleus (RT), a pure population of γ-aminobutyric acid (GABA)ergic neurons which project their axons to thalamic relay nuclei, wer found to have the lowest threshold for degeneration in this model, consistently undergoing degeneration under conditions which completely spared the hippocampal CA1 from degeneration. Whereas it took up to 30 min of complete ischemia to produce degeneration of CA1 neurons when ICP was raised using room temperature infusion fluids, 15 min of ischemia under these conditions was sufficient to produce extensive degeneration of neurons in the entire ventral 3/4 of the RT. Prolonged (>25 min) episodes of partial ischemia (ICP⩽MAP) were also sufficient to produce massive degeneration of RT neurons. The lesion in the RT was most clearly evident in sections reacted with antisera to GFAP, labeling intensely reactive protoplasmic astrocytes within the regions of the RT where neuronal degeneration had occurred. Neuronal loss and accompanying proliferation of microglial cells were evident in Nissl-stained sections but the extent of the neuronal loss was most clearly obvious in sections reacted with an antisera to AAT, an enzyme present in detectable quantities in GABAergic neurons. Pretreatment with the non-competitive NMDA antagonist MK-801 at doses sufficient to completely prevent massive degeneration of the hippocampal CA1 failed to prevent the degeneration of RT neurons, suggesting that if RT degeneration involves an excitotoxic process it acts through non-NMDA receptors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.