Abstract
A nonlocal curvature flow is introduced to evolve locally convex curves in the plane. It is proved that this flow with any initial locally convex curve has a global solution, keeping the local convexity and the elastic energy of the evolving curve, and that, as the time goes to infinity, the curve converges to a smooth, locally convex curve of constant k-order width. In particular, the limiting curve is a multiple circle if and only if the initial locally convex curve is k-symmetric.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.