Abstract
LetG be a connected complex semisimple Lie group. Let Γ be a cocompact lattice inG. In this paper, we show that whenG isSL 2(C), nontrivial deformations of the canonical complex structure onX exist if and only if the first Betti number of the lattice Γ is non-zero. It may be remarked that for a wide class of arithmetic groups Γ, one can find a subgroup Γ′ of finite index in Γ, such that Γ′/[Γ′,Γ′] is finite (it is a conjecture of Thurston that this is true for all cocompact lattices inSL(2, C)).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Indian Academy of Sciences - Section A
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.