Abstract

Tsunamis are one of the most catastrophic phenomena, causing tremendous destruction and claiming a significant number of lives. The causes of tsunamis can be different: water-quake, underwater landslides and volcanic eruptions. Even cases of tsunami are known as a result of the collapse of a huge mass of rocks in the sea. Scientists from different countries since antiquity have been studying the physics of the occurrence and development of tsunamis. The main direction of research is related to the construction of a short-term forecast of earthquakes. Currently, the traditional method of short-term tsunami forecasting is based only on seismological information (earthquake magnitude, main shock time and epicenter location). An earthquake magnitude exceeding a predetermined threshold value that differs between tsunamigenic zones usually results to a tsunami warning. The scientific significance and relevance of this problem is very high, moreover, it is vital for the majority of the world's population living in coastal regions. As the history of recent decades, especially the events of 2004 and 2011, and even recent years, shows, the efficiency of the tsunami service, to put it mildly, is far from perfect. The misses of catastrophic tsunamis, poor estimation of the energy of the arising tsunamis, false alarms, lead to very sad consequences. This is primarily due to the lack of a reliable short-term tsunami forecast. The works of recent years, based on the use of a distributed network of GPS receivers, DART systems, satellite technologies, are aimed at solving this problem, the final results of which are not yet visible. We believe that solving the problem of short-term tsunami forecast based on remote registration of deformational processes occurring in the source area of the tsunami origin is the most promising area of research, which will be partially confirmed in this paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.