Abstract
Deformation of the human brain was measured in tagged magnetic resonance images (MRI) obtained dynamically during angular acceleration of the head. This study was undertaken to provide quantitative experimental data to illuminate the mechanics of traumatic brain injury (TBI). Mild angular acceleration was imparted to the skull of a human volunteer inside an MR scanner, using a custom MR-compatible device to constrain motion. A grid of MR “tag” lines was applied to the MR images via spatial modulation of magnetization (SPAMM) in a fast gradient echo imaging sequence. Images of the moving brain were obtained dynamically by synchronizing the imaging process with the motion of the head. Deformation of the brain was characterized quantitatively via Lagrangian strain. Consistent patterns of radial-circumferential shear strain occur in the brain, similar to those observed in models of a viscoelastic gel cylinder subjected to angular acceleration. Strain fields in the brain, however, are clearly mediated by the effects of heterogeneity, divisions between regions of the brain (such as the central fissure and central sulcus) and the brain's tethering and suspension system, including the dura mater, falx cerebri, and tentorium membranes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.