Abstract

Advanced micro- and nano-electro-mechanical systems benefit from single-crystal-type epitaxial piezoelectric films, whose high crystal quality ensures excellent performance. Strong mechanical coupling in such films to non-piezoelectric substrates defines a difference in their operation with respect to purely piezoelectric counterparts. This is often described by a limiting case of a thick non-deformable substrate, whereas the film has out-of-plane deformations only. Here we consider a general practically relevant case, when converse piezoelectric effect in the film causes bending of the substrate. We provide a thermodynamic description and deliver analytical expressions for curvature, stress release, and thickness changes in a stack of the parallel-plate thin-film capacitor coherent to the substrate. It is shown that substrate deformations cannot be neglected and the d33 piezoelectric modulus receives comparable contributions from the film and the substrate. Implications for the interferometric measurement of the converse piezoelectric response are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.