Abstract

Abstract A novel separating device, Inertial particle separator (IPS), has been developed recently to separate solid particles and to protect the turbine engine from particle erosion damage. Herein first, an advanced model based on IPS was proposed to investigate the deformational behavior of deformable particle separator, and to meet the higher requirements of sand discharge and pneumatic demand, which are operated under hostile working conditions or environments and severe climate conditions. We established a three-dimensional (3D) nonlinear finite element analysis (FEA) model of bump consequently, which was the core of centerbody. The essential material parameters of the FEA model were obtained via experimental data (tensile testing). By comparing the influence of these factors (pressure and laying angle), the deformational behavior of the centerbody was discussed. Finally, based on the simulation results with the experimental data (Schlieren testing), the model was found to perform with high reliability and accuracy, demonstrating the great capability in precisely predicting the deformational characteristics of the bump under practical working environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.