Abstract

ABSTRACT Pellet–cladding mechanical interaction (PCMI) under reactivity-initiated accident conditions may lead to the failure of high-burnup fuel rods. Biaxial stress states generated by PCMI in Zircaloy cladding may make the cladding more susceptible to failure. In this study, we investigated the deformation behavior of Zircaloy cladding under biaxial stress conditions based on the concept of contours of equal plastic work. The major axis angles of the initial work contours of recrystallized (RX) and stress-relieved (SR) specimens were investigated and it was found that the shapes of the initial work contours of these kinds of specimens were almost symmetric across the direction where the ratio of axial stress to circumferential stress is 1. The shapes of subsequent work contours tended to change for the RX specimen while being the same as the initial for the SR specimen, as deformation proceeded. It was suggested that the textures and slip systems in the RX and SR specimens affect their initial work contours while the slip system in the RX specimens and the residual strain in the SR specimens influence the subsequent work contours.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.