Abstract

Reverse tension-compression and compression-tension experiments are performed on an extruded AZ31B magnesium sheets using a newly-developed antibuckling device. In addition, combined tension and shear experiments are performed to investigate the material response to multiaxial loading. A constitutive model is proposed which makes use of a single crystal approach to describe the dominant twinning and detwinning response, while a quadratic anisotropic yield function is employed to model the slip-dominated material response. The model accounts for the characteristic tension-compression asymmetry in the hardening mechanisms. Both the convex-up shaped stress-strain response under twinning and concave-down shaped response for slip-dominated behavior are predicted accurately. Furthermore, the effect of latent hardening among slip and twinning systems is taken into account. Due to strong simplifications regarding the kinematics of twinning, the model is computationally efficient and suitable for large scale structural computations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.