Abstract

Commercially available Nb/sub 3/Sn type superconductors have at least four components with different shear modulus /spl mu/. All the components are polycrystalline and therefore the yield stress in shear is of order /spl mu//500. The materials are subject to both thermal and mechanical stresses when in service. The stress levels can be well beyond the yield stress of the materials and therefore plastic flow occurs in selected components, such as Cu stabilizer and Cu-Sn matrix. Because deformation occurs at cryogenic temperatures and limited dynamic recover occurs, a high density of dislocations are accumulated. If the plastic deformation is large, deformation may be accommodated by twinning. The change of the deformation mechanisms will alter the strain-hardening rate and has an impact on the material properties. On the other hand, change of the microstructure can influence the plastic deformation behavior so that materials can be strengthened. This paper will first address the strain-hardening behavior of various components separately and then Nb/sub 3/Sn superconductor composites. A semi-empirical model is introduced to address the possible practical strengthening approaches for Nb/sub 3/Sn type superconductors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.