Abstract
The novel Hot Forming and cold die Quenching (HFQ®) process can provide cost-effective and complex deep drawn solutions through high strength aluminium alloys. However, the unfamiliarity of the new process prevents its widescale adoption in industrial settings, while accurate Finite Element (FE) simulations using the most advanced material models take place late in design processes and require forming process expertise. Machine learning technologies have recently been proven successful in learning complex system behaviour from representative examples and have the potential to be used as design support tools for new forming technologies such as HFQ®. This study, for the first time, presents a novel application of a Convolutional Neural Network (CNN) based surrogate to predict the deformation and thinning fields for variable deep drawn geometries formed using HFQ® technology. A dataset based on deep drawn geometries and corresponding FE results is generated and used to train the model. The results show that near indistinguishable full field predictions in real time are obtained from the surrogate when compared with HFQ® simulations. This technique can be adopted in industrial settings to aid in both concept and detailed component design for complex-shaped panel components formed under HFQ® conditions, without underlying knowledge of the forming process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conference Series: Materials Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.