Abstract

Motion and deformation of a water-based magnetic fluid on a hydrophobic surface were investigated under gravity and a magnetic field. Surface energy and the resultant contact angle of the magnetic fluid depend on the surfactant concentration. The fluid viscosity is governed mainly by magnetite concentration. The front edge of the droplet moved under a weak external field. The rear edge required a higher external field for movement. The forces of gravity and the magnetic field for moving of the front edge are almost equal. However, those of the rear edge are different. The motion of magnetic fluids by an external field depends on concentrations of surfactants and magnetic particles, the external field, and experimental assembly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.