Abstract

We propose a deformable registration algorithm for prostate-specific membrane antigen (PSMA) PET/CT and transrectal ultrasound (TRUS) fusion. Accurate registration of PSMA PET to intraoperative TRUS will allow physicians to customize dose planning based on the regions involved. The inputs to the registration algorithm are the PET/CT and TRUS volumes as well as the prostate segmentations. PET/CT and TRUS volumes are first rigidly registered by maximizing the overlap between the segmented prostate binary masks. Three-dimensional anatomical landmarks are then automatically extracted from the boundary as well as within the prostate. Then, a deformable registration is performed using a regularized thin plate spline where the landmark localization error is optimized between the extracted landmarks that are in correspondence. The proposed algorithm was evaluated on 25 prostate cancer patients treated with low-dose-rate brachytherapy. We registered the postimplant CT to TRUS using the proposed algorithm and computed target registration errors (TREs) by comparing implanted seed locations. Our approach outperforms state-of-the-art methods, with significantly lower ( ) TRE of while being computationally efficient (mean computation time of 38s). The proposed landmark-based PET/CT-TRUS deformable registration algorithm is simple, computationally efficient, and capable of producing quality registration of the prostate boundary as well as the internal gland.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.