Abstract
The phenomenon of the deflection of a charged particle beam due to channeling in a bent crystal is thoroughly investigated and successfully applied for the extraction of the beam in high-energy accelerators, at the energies of about 10 GeV and higher. However, a big practical interest lies in the task of bending and extracting charged particles with energies below 1 GeV, for example, for the production of ultrastable beams of low emittance for medical and biological applications. That is why a novel crystal technique, namely thin straight crystal targets, is investigated in this article, using crystals as elements for extraction and collimation of the circulating beam in a ring accelerator. The advantages of reflection in straight crystals in comparison with bent crystal channeling consist in the small length of straight crystals along the beam that reduces the amount of nuclear interactions and improves the background. Experimental results were obtained for the bending of a 100 MeV positron beam with using five sequential straight crystals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.