Abstract
In this paper we investigate questions about the definability of classes of n-computably enumerable (c. e.) sets and degrees in the Ershov difference hierarchy. It is proved that the class of all c. e. sets is definable under the set inclusion ⊆ in all finite levels of the difference hierarchy. It is also proved the definability of all m-c. e. degrees in each higher level of the hierarchy. Besides, for each level n, n ≥ 2, of the hierarchy a definable non-trivial subset of n-c. e. degrees is established.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.