Abstract

Previous studies demonstrated increased levels of cysteine proteases cathepsins in serum and adipose tissues from obese patients. We now provide evidence from a mouse model of obesity to suggest a direct participation of cathepsin K (CatK) in mouse body weight gain and glucose metabolism. Using real-time polymerase chain reaction, we detected 12-fold increase in CatK transcripts after adipogenesis of human preadipocytes. Using an immunohistology analysis, we consistently observed high levels of CatK expression in adipose tissues from obese humans and mice. Selective inhibition of CatK activity blocked the lipid accumulation in human and mouse preadipocytes. In mice, CatK deficiency reduced significantly diet-induced body weight gain and serum glucose and insulin levels. Similar results were obtained in diet-induced and genetically created (ob/ob) obese mice after animals were treated with a CatK-selective inhibitor. Mechanistic study demonstrated a role for CatK in degrading fibronectin, a matrix protein that controls adipogenesis. Deficiency or inhibition of CatK leads to fibronectin accumulation in muscle and adipose tissues. This study demonstrates an essential role of CatK in adipogenesis and mouse body weight gain, possibly via degradation of fibronectin, thus suggesting a novel therapeutic strategy for the control of obesity by regulating CatK activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.