Abstract
Fundamental photocatalytic limitations of solar CO2 reduction remain due to low efficiency, serious charge recombination, and short lifetime of catalysts. Herein, two-dimensional graphitic carbon nitride nanosheets with nitrogen vacancies (g-C3 Nx ) located at both three-coordinate N atoms and uncondensed terminal NHx species were prepared by one-step tartaric acid-assistant thermal polymerization of dicyandiamide. Transient absorption spectra revealed that the defects in g-C3 N4 act as trapped states of charges to result in prolonged lifetimes of photoexcited charge carriers. Time-resolved photoluminescence spectroscopy revealed that the faster decay of charges is due to the decreased interlayer stacking distance in g-C3 Nx in favor of hopping transition and mobility of charge carriers to the surface of the material. Owing to the synergic virtues of strong visible-light absorption, large surface area, and efficient charge separation, the g-C3 Nx nanosheets with negligible loss after 15 h of photocatalysis exhibited a CO evolution rate of 56.9 μmol g-1 h-1 under visible-light irradiation, which is roughly eight times higher than that of pristine g-C3 N4 . This work presents the role of defects in modulating light absorption and charge separation, which opens an avenue to robust solar-energy conversion performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.