Abstract

We report on the association of Ultra High Vaccum Chemical Vapor Deposition (UHVCVD) and Molecular Beam Epitaxy (MBE) to achieve III–V (GaP) integration on Si/Si(100) substrates. We first demonstrate that a very good flatness (0.3nm) can be obtained when growing directly GaP on a chemically prepared Si substrate. X-ray diffraction pole figure however demonstrates that a residual amount of micro-twins originating from the hetero-interface still remains. Silicon homoepitaxial buffer layer is then optimized in the UHVCVD chamber on different Si substrates misorientation (+/-0.15–6°-off) . A flat, clean and bistepped Si surface is achieved during the homoepitaxial growth on 6°-off silicon substrates. Samples are then transferred under UHV conditions to the MBE chamber to perform GaP overgrowth. Keeping the same III–V overgrowth conditions, influence of silicon homoepitaxial buffer layer on micro-twins generation is determined quantitatively using Synchrotron X-Ray Diffraction. We finally demonstrate that growing a flat, clean and bistepped silicon buffer layer on a 6°-off substrate, and transferring it under UHV to the MBE chamber for GaP overgrowth reduces significantly the amount of anisotropic defects generated in the GaP epilayers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.