Abstract

AbstractThis review examines the role of defective carbon‐based electrodes in sodium‐ion and vanadium flow batteries. Methods for introducing defects into carbon structures are explored and their effectiveness in improving electrode performance is demonstrated. In sodium‐based systems, research focuses primarily on various precursor materials and heteroatom doping to optimise hard carbon electrodes. Defect engineering increases interlayer spacing, porosity, and changes the surface chemistry, which improves sodium intercalation and reversible capacities. Heteroatom functionalisation and surface modification affect solid electrolyte interface formation and coulombic efficiencies. For flow batteries, post‐fabrication electrode enhancement methods produce defects to improve electrode kinetics, although these methods often introduce oxygen functional groups as well, making isolation of defect effects difficult. Continued research efforts are key to developing carbon‐based electrodes that can meet the unique challenges of future battery systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.