Abstract
Exchange bias stems from the interaction between different magnetic phases, and therefore, it generally occurs in magnetic multilayers. Here, we present a large exchange bias in a single SrRuO3 layer induced by helium ion irradiation. When the fluence increases, the induced defects not only suppress the magnetization and the Curie temperature but also drive a metal-insulator transition at a low temperature. In particular, a large exchange bias field up to ∼0.36 T can be created by the irradiation. This large exchange bias is related to the coexistence of different magnetic and structural phases that are introduced by embedded defects. Our work demonstrates that spintronic properties in complex oxides can be created and enhanced by applying ion irradiation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.