Abstract

High-quality few-layer M4 C3 Tx (M=V, Nb, Ta) MXenes are very important for applications and are necessary for clarifying their physicochemical properties. However, the difficulty in etching for themselves and the existence of MC/MC1-δ and M-Al alloy impurities in their M4 AlC3 precursors seriously hinder the achievement of defect-free few-layer M4 C3 Tx (M=V, Nb, Ta) MXenes nanosheets. Herein, three different defect-free few-layer M4 C3 Tx (M=V, Nb, Ta) nanosheets are obtained by using a universal synthesis strategy of calcination, selective etching, intercalation, and exfoliation. Comprehensive characterizations confirm their defect-free few-layer structure feature, large interlayer spacing (1.702-1.955nm), types of functional groups (-OH, -F, -O), and abundant valance states (M5+ , M4+ , M3+ , M2+ , M0 ). M4 C3 Tx (M=V, Nb, Ta) free-standing films obtained by vacuum filtration of few-layer M4 C3 Tx inks show good hydrophilia, high thermostability, and conductivity. A roadmap on synthesis of defect-free few-layer M4 C3 Tx (M=V, Nb, Ta) nanosheets are proposed and three key points are summarized. This work provides detailed guidelines for the synthesis of other defect-free few-layer MXenes nanosheets, but also will stimulateextensive functional explorations for M4 C3 Tx (M=V, Nb, Ta) MXenes nanosheets in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.