Abstract

The paper discusses the mechanisms of defect formation in melt zinc selenide crystals doped with isovalent impurities of the second group of the Periodic Table. An analytical calculation of the concentrations of equilibrium point defects was carried out by the method of quasichemical reactions using the concepts of electronegativity and effective charge. It has been established that the dominant defects in the doped material are singly charged vacancies of zinc V'Zn and selenium V·Se, as well as singly charged interstitial selenium Se'i. It is shown that the increase in doping temperature Ta from 373 to 1237 K causes se increase of acceptor centers number (V'Zn and Se'i) and decrease of concentration of donor ounces V·Se however, the conductivity of doped substrates at 300 K remains a hole in the whole range of change Ta. At Ta = 373 K the estimated concentration of free holes is ~1019 cm-3 and satisfactorily consistent with the value p determined from the temperature dependence of the layer resistance ZnSe:Ca.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.